
UCRL-ID-144213

Building a High Performance
Raw Disk Subsystem for
Alpha/Linux

Jim E. Garlick

July 2, 2001

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.



Building a High Performance Raw Disk Subsystem for

Alpha/Linux

Jim E. Garlick

garlick@llnl.gov

July 2, 2001

Abstract

The Linux kernel version 2.2.19 lacks UNIX-style raw disk support, and its SCSI layer is
optimized for small transfer sizes. This report describes kernel patches to add raw disk support
and enhance performance in the SCSI layer and QLA2x00 Fibre Channel device driver for large
transfer sizes. Benchmarks demonstrate raw disk performance of 191 megabytes/second write,
176 megabytes/second read for one megabyte random I/O on a Compaq ES40 computer system
with two QLogic QLA2200F Fibre Channel host bus adapters, each connected to two Ciprico
RF7010 arrays on arbitrated loop.

1 Introduction

Lawrence Livermore National Laboratory has been involved in the porting and tuning of the Frangi-
pani(Thekkath et al., 1997) network filesystem and Petal(Lee and Thekkath, 1996) virtual disk server
for a parallel scientific workload on Alpha/Linux massively parallel processors (MPP’s) since early
2000. Petal’s job is to provide network access to a virtual disk which may be served by multiple
cluster nodes, each serving data from multiple physical disks. Part of the tuning work was to modify
Petal’s RPC layer to directly use the Quadrics Elan3 interconnect. This made it possible for the
RPC layer to deliver nearly 200 megabytes/second for one megabyte transfers, an improvement over
the 35 megabytes/second obtained with 64 kilobyte transfers using User Datagram Protocol (UDP)
over the same Elan3 interconnect.

Petal runs in user space and therefore requires direct access to disk devices. Ideally, this access
would be provided by a raw disk subsystem which bypasses the buffer cache; however, Linux is
unique among UNIX-like operating systems in that it does not support UNIX-style raw disk access.
Section 2 describes patches to the kernel which add raw device support.

Livermore’s scientific workload demands transfers of large blocks from a parallel filesystem, and
Frangipani’s read-ahead and write-behind algorithms aggregate smaller requests when possible, re-
sulting in a Petal access pattern that favors large blocksizes. Petal’s striping across multiple disks
and nodes, its mapping of virtual offsets to physical block numbers, and the fact that multiple I/O
streams are served concurrently conspire to create a request pattern that is not sequential on the
disk. The disk subsystem used by a Petal server should therefore be optimized for random I/O
of large blocksizes. Tuning of the hardware used in this report to maximize performance for large
transfers is described in Section 3.

Finally, a cost-effective Petal server should balance the performance of its interconnect with
that of its disk subsystem. Since a Petal server in theory could service 200 one megabyte requests
per second over the Quadrics interconnect, the raw disk subsystem on a Petal server should have
comparable performance for the same workload. Section 4 demonstrates with benchmarks that this
is achieved for the hardware described in this report.

1



2 UNIX-style Raw Disk Devices

Linus Torvalds, the Linux kernel’s primary architect, omitted support for UNIX-style raw (un-
buffered) disk access from the kernel through version 2.2.19 as a conscious design decision(Torvalds,
). Due to the demand from vendors of high-end relational database management systems and others
for raw devices, Stephen Tweedie of RedHat, Inc. developed a patch1 to implement a variant of raw
device support in the Linux 2.2.X series. The Stephen Tweedie rawio patch has been distributed as
part of RedHat Linux since version 6.1, and has been incorporated into the mainstream 2.4 kernel
series.

rawio has two unique characteristics. First, it employs zero-copy I/O. Instead of copying user
buffers to kernel space before initiating a direct memory access (DMA) to perform the I/O, the
kernel sets up the DMA to operate directly on the user buffers, saving the overhead of copying data
between user and kernel space. The details of preventing the system from swapping out user buffers
while a DMA is pending are managed by the kernel, but zero-copy I/O does introduce one constraint
in user space: buffers must be aligned on the device sector size boundary, typically 512 bytes. It is
always safe to use the page-aligned buffer returned by valloc. It follows that the dd command must
be modified to use an aligned buffer if it is to be used on raw devices.

The second characteristic of rawio is that raw device special files differ from traditional UNIX,
where each block device has a corresponding character device for unbuffered I/O. Instead, rawio
implements a set of unbound raw devices, /dev/rawN, and a control device /dev/rawctl used to
bind them to block devices. A utility called raw is a front end for the /dev/rawctl ioctl.

rawio suffers from one major deficiency in our application: it makes use of the file system
buffer head data structure and associated queueing routines, necessitating the fragmention of large
raw requests into separate one kilobyte transfers. As stated in the introduction, a goal of our work
is to optimize for large transfers. This issue is addressed for SCSI devices by a patch developed at
SGI2. The SGI patch bypasses the buffer head routines and increases the maximum atomic transfer
size to one megabyte.

As a bonus, the SGI patch also provides traditional UNIX character/block device special files,
where character special raw SCSI devices have the same major and minor numbers as the corre-
sponding block SCSI devices, and the same name except an “r” is prepended; for example, block
device /dev/sd1a would correspond to raw device /dev/rsd1a.

The net effect of the rawio and SGI patches applied together to the Linux kernel version 2.2.19
is an implementation of UNIX-style raw devices with the following caveats:

• Only SCSI devices are supported (this includes Fibre Channel which uses the SCSI-FCP pro-
tocol). Other block devices such as those used to access IDE disks or meta devices like loopback
or the multiple disk (MD) driver are not supported.

• Buffers must be aligned on the device sector size. A read or write request operating on an
unaligned buffer will fail and set errno to EINVAL.

• A maximum of one megabyte can be transferred atomically. A read or write request for more
than one megabyte will fail and set errno to EINVAL.

Many terabytes have been pushed through the raw device path on Alpha/Linux in the course
of developing and testing Petal code. The implementation is stable, and its performance is demon-
strated in Section 4.

3 Fibre Channel Disk Subsystem

The test hardware used in this report is depicted in Figure 1. It consists of a computer system, a
Fibre Channel disk subsystem, and an interface to the Quadrics Elan3 interconnect. The computer

1ftp://ftp.linux.org.uk/pub/linux/sct/fs/raw-io/
2http://oss.sgi.com/projects/rawio/

2



Compaq ES40

QLA2200F

QLA2200F

Elan3

To
Interconnect

Ciprico
7010

Ciprico
7010

Ciprico
7010

Ciprico
7010

FC-AL #1

FC-AL #2

Figure 1: Hardware Test Environment

system is a Compaq ES40 configured with two gigabytes of RAM (all four memory banks populated)
and four 500MHz Alpha EV6 CPU’s. The ES40 has dual 64 bit, 33 MHz PCI busses; the Elan3
adapter board is on one bus, and the QLogic QLA2200F Fibre Channel host bus adapters (HBAs)
are on the other.

Each HBA shares a Fibre Channel arbitrated loop with two Ciprico RF7010 RAID arrays, a
RAID-3 array built from nine 10,000 RPM, 18 gigabyte SCSI disks (eight data disks and one parity
disk). The array’s capacity is 144 gigabytes, and the stripe size is four kilobytes. Its configuration,
set via the front panel, is detailed in Appendix B. The remainder of this section focuses on the
tuning of the QLogic HBA’s.

The QLogic QLA2200F is a 64 bit, 33/66 MHz PCI adapter that supports the SCSI-3 Fibre
Channel Protocol (SCSI-FCP) standard over multi-mode fiber optic media. It can transfer data at
up to 100 megabytes/second.3 Both the HBA firmware and the Linux device driver require tuning
for our environment.

To change QLA2200F firmware settings when the host is an Alpha architecture system running
the SRM BIOS, the HBA must be removed from the system and placed in a PC, where it will
function at reduced performance in a 32 bit slot (acceptable for configuration purposes). The
Fast!UTIL configuration utility on the PC is accessed by pressing ALT-Q during the QLA2200
BIOS initialization. The HBA manual(QLogic, 2000) describes the parameters that may be tuned
via Fast!UTIL. For this report, factory defaults were set, then the Frame Size parameter in the Host
Adapter Settings menu was increased from 1024 to 2048. The final firmware values are presented in
Appendix A below.

The Linux driver for the QLA2x00 series is available from QLogic’s web site4. We started
with version 4.24-Beta. As distributed, 4.24-Beta functions on Alpha/Linux, an improvement over
previous versions, but the following changes were still necessary:

• Increased SG SEGMENTS in qla2x00.h from 32 to 144. This number is passed to the SCSI
layer to inform it of the adapter’s maximum scatter-gather table size. This increase is necessary
to achieve good performance with large blocksizes.

• Reduced delays when reading NVRAM to avoid “spinlock stuck” messages from the kernel
during initialization and module unload.

• Added code to retry failed firmware reset until it succedes. This fixes a bug where occasionally
the Fibre Channel loop does not come up when the module is initialized, resulting in missing
SCSI devices.

With the combination of firmware settings and driver modifications described above, the QLogic
QLA2200F HBA functions quite well under Alpha/Linux 2.2.19 and in combination with the raw

3Fibre Channel FC-0 serial link speed is 1.0625 gigabaud, and FC-1 8B/10B encoding scheme uses 10 bits for each
byte, yielding a 100 megabytes/second effective rate; this does not take into account the framing overhead of FC-2
and protocol overheads of FC-3 and FC-4.(Benner, 1996)

4http://www.qlogic.com/bbs-html/ts page.html

3



device patches described in Section 2, two HBA’s can operate at 95 or more percent of their combined
maximum data transfer rate of 200 megabytes/second.

4 Performance Results

Three benchmarks measured data rates for the test system: devtest (Version 1.0), which measures
random I/O; donnie, which measures sequential I/O across several sections of disk concurrently; and
xdd (Version 5.3-alpha1), which measures seqential I/O.

devtest measures random I/O performance. For this report, devtest started four threads per
device, meaning the queue depth, or number of simultaneous outstanding requests, was four per
device. Requests were randomized over a 100 gigabyte section of the array. Figure 2 summarizes
the results. The one megabyte write rate was measured at 191 megabytes/second and read rate at
176 megabytes/second.

donnie is a derivative of the bonnie5 benchmark that operates on raw devices. The High Perfor-
mance Storage System (HPSS) group at Livermore uses it to evaluate storage subsystems. donnie
performs I/O sequentially to a number of files (actually contiguous segments of the target device) of
various sizes. A separate concurrent thread executes for each file For this report, donnie performed
I/O on four files on each of four arrays, thus the queue depth per array was four. Figure 3 shows
output of the donnie benchmark. Read and write rates for one megabyte transfers were measured
at 168 megabytes/second.

xdd(Ruwart and O’Keefe, 1995) is a raw I/O benchmark developed at the University of Min-
nesota. In our tests, the queue depth was set to one for each device. A report(Ruwart and Elder,
2000) prepared for Livermore uses xdd to measure raw performance of a Ciprico/QLogic Fibre Chan-
nel subsystem similar6 to ours, but hosted on an SGI ONYX running IRIX. We hoped to reproduce
the report’s results up to the one megabyte atomic transfer size limit imposed by Linux raw devices.

Figure 4 depicts xdd read and write test results. Reads peaked at 188 megabytes/second; writes
at 162 megabytes/second. There was a suprise when the SGI system results were compared with
the same configuration on Linux. For one megabyte transfers using two arrays and two adapters,
the SGI system reported read and write rates of approximately 175 megabyte/second, while Linux
reported a read rate of 173 megabytes/second and a write rate of 142 megabytes/second.

To determine if xdd accurately reports write rates on Linux, a version of devtest, modified to
perform sequential I/O in the same manner as xdd, measured sequential performance. Figure 5
shows the results. For one megabyte transfers on four arrays and two adapters, devtest reported a
sequential read rate of 183 megabytes/second and a write rate of 188 megabyte/second. The rates
for one megabyte transfers on two arrays and two adapters of 167 megabytes/second read and write
compare favorably to the SGI system results quoted above, in terms of both overall performance,
and the similarity between read and write rates.

In summary, the important performance results are devtest rates for random one megabyte trans-
fers, since this pattern of access most closely matches that anticipated for a Petal server in our envi-
ronment. The devtest 191 megabytes/second write and 176 megabytes/second read rates come close
to the rates possible over Petal RPC; therefore, a Petal server configured as described in this report
meets the goal of balancing performance of the raw disk subsystem with that of the interconnect.

5 Conclusion

Obtaining support in the Linux kernel version 2.2.19 for raw devices and high performance on
the hardware described in this report consists of applying two patches to the kernel source code,
modifying the Linux device driver for the QLogic HBA, and setting up the firmware of the HBA
and the disk arrays.

5http://www.textuality.com/bonnie/
6The SGI system was configured with Ciprico RF7000 arrays populated with Seagate Barricuda 50 gigabyte drives

(7200 RPM?), compared to our 18 gigabyte IBM drives (10,000 RPM); and QLogic host adapters (model unknown)
plugged into PCI to XIO adapters.

4



0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512 1024

R
at

e
In

 M
-B

yt
es

 / 
S

ec
on

d

Block Size
In K-Bytes

devtest Read Performance, Ciprico RF7010 (slc9)

one array, one adapter
two arrays, one adapter

two arrays, two adapters
four arrays, two adapters

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512 1024

R
at

e
In

 M
-B

yt
es

 / 
S

ec
on

d

Block Size
In K-Bytes

devtest Write Performance, Ciprico RF7010 (slc9)

one array, one adapter
two arrays, one adapter

two arrays, two adapters
four arrays, two adapters

Figure 2: devtest Read and Write Performance - Ciprico RF7010

5



RUN BEGINNING Thu May 24 15:23:05 2001

Linux slc9 2.2.19raw_smp #6 SMP Tue May 15 14:54:10 PDT 2001 alpha unknown

4 devices

1 partitions per device

131072 megabytes per device

131072 megabytes per partition

4 simultaneous jobs (file sizes) per partition

1024 kilobytes per buffer

300 seconds job duration (for each - read and write)

/dev/rsdb /dev/rsdc /dev/rsdd /dev/rsde

WRITE DATA - 300.9 SECONDS RUN TIME

device 0 data

mbyte/file bufs wrtn MB written MB per sec Utime Stime Clock %cpu

65536 3262 3262.000 10.843 0.01 0.61 300.84 0.2

16384 2980 2980.000 9.906 0.01 0.54 300.83 0.2

4096 3145 3145.000 10.456 0.01 0.59 300.79 0.2

1024 2902 2902.000 9.646 0.00 0.52 300.85 0.2

Write Total 12289 12289.000 40.843 0.03 2.25 0.8

device 1 data

mbyte/file bufs wrtn MB written MB per sec Utime Stime Clock %cpu

65536 3120 3120.000 10.373 0.00 0.57 300.79 0.2

16384 3016 3016.000 10.028 0.00 0.58 300.75 0.2

4096 3020 3020.000 10.040 0.01 0.58 300.81 0.2

1024 3376 3376.000 11.225 0.00 0.60 300.76 0.2

Write Total 12532 12532.000 41.657 0.02 2.33 0.8

device 2 data

mbyte/file bufs wrtn MB written MB per sec Utime Stime Clock %cpu

65536 3316 3316.000 11.023 0.00 0.58 300.81 0.2

16384 2968 2968.000 9.867 0.00 0.52 300.79 0.2

4096 3352 3352.000 11.144 0.00 0.60 300.78 0.2

1024 3243 3243.000 10.784 0.01 0.61 300.73 0.2

Write Total 12879 12879.000 42.811 0.03 2.32 0.8

device 3 data

mbyte/file bufs wrtn MB written MB per sec Utime Stime Clock %cpu

65536 3301 3301.000 10.976 0.01 0.60 300.75 0.2

16384 3088 3088.000 10.264 0.00 0.59 300.85 0.2

4096 3193 3193.000 10.617 0.00 0.55 300.74 0.2

1024 3380 3380.000 11.238 0.00 0.61 300.77 0.2

Write Total 12962 12962.000 43.085 0.02 2.35 0.8

Grand Total 50662 50662.000 168.371 0.09 9.25 3.1

READ DATA - 301.0 SECONDS RUN TIME

device 0 data

mbyte/file bufs read MB read MB per sec Utime Stime Clock %cpu

65536 2996 2996.000 9.959 0.01 0.59 300.84 0.2

16384 3312 3312.000 11.007 0.01 0.58 300.89 0.2

4096 2984 2984.000 9.917 0.00 0.53 300.89 0.2

1024 2856 2856.000 9.494 0.00 0.53 300.82 0.2

Read Total 12148 12148.000 40.370 0.02 2.23 0.7

device 1 data

mbyte/file bufs read MB read MB per sec Utime Stime Clock %cpu

65536 3082 3082.000 10.241 0.00 0.57 300.94 0.2

16384 3244 3244.000 10.782 0.01 0.58 300.88 0.2

4096 3169 3169.000 10.531 0.01 0.60 300.92 0.2

1024 2955 2955.000 9.823 0.01 0.53 300.81 0.2

Read Total 12450 12450.000 41.367 0.02 2.28 0.8

device 2 data

mbyte/file bufs read MB read MB per sec Utime Stime Clock %cpu

65536 3136 3136.000 10.423 0.01 0.57 300.86 0.2

16384 3497 3497.000 11.626 0.01 0.60 300.79 0.2

4096 2962 2962.000 9.846 0.01 0.56 300.83 0.2

1024 3387 3387.000 11.258 0.01 0.59 300.86 0.2

Read Total 12982 12982.000 43.147 0.03 2.32 0.8

device 3 data

mbyte/file bufs read MB read MB per sec Utime Stime Clock %cpu

65536 3575 3575.000 11.880 0.00 0.66 300.92 0.2

16384 3521 3521.000 11.699 0.01 0.64 300.96 0.2

4096 3211 3211.000 10.674 0.01 0.61 300.82 0.2

1024 2804 2804.000 9.320 0.00 0.58 300.86 0.2

Read Total 13111 13111.000 43.564 0.02 2.49 0.8

Grand Total 50691 50691.000 168.427 0.10 9.32 3.1

Average Score 101353.000 168.399 3.1

RUN FINISHED Thu May 24 15:33:07 2001

Figure 3: donnie Results - Ciprico RF7010

6



0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512 1024

R
at

e
In

 M
-B

yt
es

 / 
S

ec
on

d

Block Size
In K-Bytes

xdd Read Performance, Ciprico RF7010 (slc11)

one array, one adapter
two arrays, one adapter

two arrays, two adapters
four arrays, two adapters

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512 1024

R
at

e
In

 M
-B

yt
es

 / 
S

ec
on

d

Block Size
In K-Bytes

xdd Write Performance, Ciprico RF7010 (slc11)

one array, one adapter
two arrays, one adapter

two arrays, two adapters
four arrays, two adapters

Figure 4: xdd Read and Write Performance - Ciprico RF7010

7



0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512 1024

R
at

e
In

 M
-B

yt
es

 / 
S

ec
on

d

Block Size
In K-Bytes

devtest-seq Read Performance on Ciprico RF7010 (slc9)

one array, one adapter
two arrays, one adapter

two arrays, two adapters
four arrays, two adapters

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512 1024

R
at

e
In

 M
-B

yt
es

 / 
S

ec
on

d

Block Size
In K-Bytes

devtest-seq Write Performance on Ciprico RF7010 (slc9)

one array, one adapter
two arrays, one adapter

two arrays, two adapters
four arrays, two adapters

Figure 5: devtest-seq Read and Write Performance - Ciprico RF7010

8



I/O rates that are between 87 and 95 percent of the theoretical HBA bandwidth of 200 megabytes/second
for random one megabyte transfers were demonstrated, meeting the goal stated in Section 1 of bal-
ancing the performance of the disk subsystem with that of the Petal RPC layer, which can transfer
one megabyte blocks at a rate approaching 200 megabytes/second over the Quadrics Elan3 inter-
connect.

6 Acknowledgements

Brian Pomerantz did most of raw device work described in this report, modulo a few bug fixes, a
kernel revision, and some QLogic and Ciprico firmware changes; Reto Baettig wrote the devtest
program; Andrew Uselton added functionality to the devtest program and assisted with QLogic
firmware and Ciprico configuration; Marcus Miller fixed bugs in the QLA2X00 Linux driver; and
Danny Auble assisted with the QLogic firmware configuration and adapter installations.

9



A QLogic QLA2200F Firmware Settings

The following table summarizes the QLogic QLA2200F tunable firmware settings used in this report.
The hardware manual(QLogic, 2000) describes these settings in detail.

Adapter Settings

BIOS Rev 1.54
Frame Size 2048
Loop Reset Delay 5
Adapter Hard Loop ID Disabled

Advanced Adapter Settings

Execution Throttle 16
Fast Command Posting Enabled
>4Gbyte Addressing Disabled
Luns per Target 8
Enable LIP Reset No
Enable LIP Full Login Yes
Enable Target Reset Yes
Login Retry Count 8
Part Down Retry Count 8
Drivers Load RISC Code Enabled
Enable Database Updates No
Disable Database Load No
IOCB Allocation 256
Extended Error Logging Disabled

Extended Settings

Ext control block 0
RIO op mode 3
connection op Disabled
class 2 svc Disabled
ack 0 Disabled
fc tape Disabled
fc confirm Disabled
cmd reset num Disabled
read xfer rdy Disabled
reop timer 0
int delay timer 0

10



B Ciprico RF7010 Firmware Settings

The following table summarizes the Ciprico RF7010 configurable array options used in this report.
The array service guide(Ciprico, 2000) and RAID controller manual(Ciprico, 1998) provide detailed
information about configuration and array specifications.

Array Options

AL PA E4
AL SELID 02
ALTERNATE WWN 000000
UNIT ATTENTION ON
WRITE CACHE ON
AUTOSTART ON
ALARM ON
USE FIRMWARE FACTORY FW
SPINUP TIME 1.0 SEC
FC TOPOLOGY AUTO NO FAB
NUM INITIATORS 10

11



C Linux Kernel Configuration

The .config file used to build the Linux kernel (version 2.2.19) used in this report is shown below.
Of particular note are CONFIG RAW, CONFIG SCSI MULTI LUN, and CONFIG SCSI QLOGIC 2x00.

CONFIG EXPERIMENTAL=y CONFIG SCSI AIC7XXX=y

CONFIG AIC7XXX TCQ ON BY DEFAULT=y

CONFIG MODULES=y CONFIG AIC7XXX CMDS PER DEVICE=8

CONFIG KMOD=y CONFIG SCSI SYM53C8XX=y

CONFIG SCSI NCR53C8XX DEFAULT TAGS=8

CONFIG ALPHA DP264=y CONFIG SCSI NCR53C8XX MAX TAGS=32

CONFIG PCI=y CONFIG SCSI NCR53C8XX SYNC=40

CONFIG ALPHA EV6=y CONFIG SCSI NCR53C8XX PQS PDS=y

CONFIG ALPHA TSUNAMI=y CONFIG SCSI QLOGIC ISP=m

CONFIG ALPHA SRM=y CONFIG SCSI QLOGIC 2x00=m

CONFIG SMP=y

CONFIG PCI OLD PROC=y CONFIG NETDEVICES=y

CONFIG NET=y

CONFIG SYSVIPC=y CONFIG DUMMY=m

CONFIG SYSCTL=y

CONFIG BINFMT AOUT=y CONFIG NET ETHERNET=y

CONFIG BINFMT ELF=y CONFIG NET EISA=y

CONFIG BINFMT MISC=y CONFIG DE4X5=m

CONFIG BINFMT EM86=y CONFIG DEC ELCP=m

CONFIG PARPORT=m CONFIG EEXPRESS PRO100=m

CONFIG PARPORT PC=m

CONFIG ACENIC=m

CONFIG BLK DEV FD=y

CONFIG BLK DEV IDE=y CONFIG VT=y

CONFIG VT CONSOLE=y

CONFIG BLK DEV IDECD=y CONFIG SERIAL=y

CONFIG BLK DEV IDESCSI=m CONFIG SERIAL CONSOLE=y

CONFIG BLK DEV IDEPCI=y CONFIG UNIX98 PTYS=y

CONFIG BLK DEV IDEDMA=y CONFIG UNIX98 PTY COUNT=256

CONFIG IDEDMA AUTO=y CONFIG PRINTER=m

CONFIG PRINTER READBACK=y

CONFIG BLK DEV LOOP=m CONFIG MOUSE=y

CONFIG BLK DEV NBD=y

CONFIG BLK DEV RAM=y CONFIG PSMOUSE=y

CONFIG BLK DEV RAM SIZE=4096

CONFIG BLK DEV INITRD=y CONFIG FAT FS=m

CONFIG PARIDE PARPORT=m CONFIG MSDOS FS=m

CONFIG VFAT FS=m

CONFIG PACKET=y CONFIG ISO9660 FS=y

CONFIG FILTER=y CONFIG PROC FS=y

CONFIG UNIX=y CONFIG DEVPTS FS=y

CONFIG INET=y CONFIG EXT2 FS=y

CONFIG IP MULTICAST=y

CONFIG IP ROUTER=y CONFIG NFS FS=y

CONFIG NFS V3=y

CONFIG SKB LARGE=y CONFIG NFSD=m

CONFIG SUNRPC=y

CONFIG SCSI=y CONFIG LOCKD=y

CONFIG BLK DEV SD=y CONFIG BSD DISKLABEL=y

CONFIG CHR DEV ST=m CONFIG NLS=y

CONFIG BLK DEV SR=y

CONFIG BLK DEV SR VENDOR=y CONFIG NLS DEFAULT="cp437"

CONFIG CHR DEV SG=m CONFIG NLS CODEPAGE 437=m

CONFIG NLS ISO8859 1=m

CONFIG SCSI MULTI LUN=y CONFIG NLS ISO8859 15=m

CONFIG RAW=y

CONFIG SCSI CONSTANTS=y CONFIG VGA CONSOLE=y

CONFIG MATHEMU=y

CONFIG MAGIC SYSRQ=y

12



References

Benner, A. F.: 1996, Fibre Channel, Gigabit Communications and I/O for Computer Networks,
McGraw-Hill

Ciprico: 1998, Ciprico 7000 Controller Board Reference Manual, http://www.ciprico.com/
Ciprico: 2000, Ciprico 7000 User and Service Guide, http://www.ciprico.com/
Lee, E. K. and Thekkath, C. A.: 1996, in Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems, pp 84–92, Cambridge,
MA

QLogic: 2000, Hardware Installation Guide for the QLA2200/2200F/2202F/2200G/2200L Fiber
Channel Host Adapter for the PCI Bus, http://www.qlogic.com/

Ruwart, T. and Elder, A.: 2000, SAN/CXFS Test Report to LLNL, Technical report, University of
Minnesota, Laboratory for Computational Science and Engineering

Ruwart, T. M. and O’Keefe, M. T.: 1995, in Proceedings of the Fourth NASA Goddard Conference
on Mass Storage Systems and Technologies, College Park, MD

Thekkath, C. A., Mann, T., and Lee, E. K.: 1997, in Symposium on Operating Systems Principles,
pp 224–237

Torvalds, L., Email from Linus Torvalds: Re: PATCH: Raw device IO for 2.1.131,
http://lwn.net/1998/1217/a/dio-lt.html

13




